Multivariate data analysis
Joseph F.Hair..[et al.]
Multivariate data analysis - Eighth edition. - Delhi : Cengage Learning, 2019 - xvii, 813 pages : illustrations ;
Revision of: Multivariate data analysis / Joseph F. Hair, Jr. ... [et al.]. c2006. 7th ed.
1. Overview of multivariate methods --
Section I: Preparing for multivariate analysis --
Chapter 2: Examining your data --
Section II: Interdependence techniques --
Chapter 3: Exploratory factor analysis --
Chapter 4: Cluster analysis --
Section III: Dependence techniques --
metric outcomes --
Chapter 5: Multiple regression analysis --
Chapter 6: MANOVA:extending ANOVA --
Section IV: Dependence techniques --
non-metric outcomes --
Chapter 7: Multiple discriminant analysis --
Chapter 8: Logistic regression: regression with a binary dependent variable --
Section V: Moving beyond the basics --
Chapter 9: Structural equation modeling: an introduction --
Chapter 10: SEM: confirmatory factor analysis --
Chapter 11: Testing structural equation models --
Chapter 12: Advanced SEM topics --
Chapter 13: Partial least squares structural equation modeling (PLS-SEM).
Multivariate Data Analysis is an applications-oriented introduction to multivariate analysis for the non-statistician. The eighth edition incorporates pivotal advances in technology that will assist students in gaining a firm understanding of statistical and managerial principles so as to develop a "comfort zone" not only for the statistical, but also the practical issues involved.
9789353501358
Multivariate analysis.
519.535 / MUL
Multivariate data analysis - Eighth edition. - Delhi : Cengage Learning, 2019 - xvii, 813 pages : illustrations ;
Revision of: Multivariate data analysis / Joseph F. Hair, Jr. ... [et al.]. c2006. 7th ed.
1. Overview of multivariate methods --
Section I: Preparing for multivariate analysis --
Chapter 2: Examining your data --
Section II: Interdependence techniques --
Chapter 3: Exploratory factor analysis --
Chapter 4: Cluster analysis --
Section III: Dependence techniques --
metric outcomes --
Chapter 5: Multiple regression analysis --
Chapter 6: MANOVA:extending ANOVA --
Section IV: Dependence techniques --
non-metric outcomes --
Chapter 7: Multiple discriminant analysis --
Chapter 8: Logistic regression: regression with a binary dependent variable --
Section V: Moving beyond the basics --
Chapter 9: Structural equation modeling: an introduction --
Chapter 10: SEM: confirmatory factor analysis --
Chapter 11: Testing structural equation models --
Chapter 12: Advanced SEM topics --
Chapter 13: Partial least squares structural equation modeling (PLS-SEM).
Multivariate Data Analysis is an applications-oriented introduction to multivariate analysis for the non-statistician. The eighth edition incorporates pivotal advances in technology that will assist students in gaining a firm understanding of statistical and managerial principles so as to develop a "comfort zone" not only for the statistical, but also the practical issues involved.
9789353501358
Multivariate analysis.
519.535 / MUL