Functions of One Complex Variable (Record no. 39072)

MARC details
000 -LEADER
fixed length control field 03610nam a2200253 a 4500
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9780387903286
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 0387903283
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9783540903284
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 3540903283
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9788185015378
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 8185015376
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 515.9
Item number CON
100 ## - MAIN ENTRY--AUTHOR NAME
Personal name Conway, John B.
245 ## - TITLE STATEMENT
Title Functions of One Complex Variable
250 ## - EDITION STATEMENT
Edition statement 2nd ed.
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication New Delhi:
Name of publisher Narosa Pub.,
Year of publication 1980.
300 ## - PHYSICAL DESCRIPTION
Number of Pages xiii, 317 pages :
Other physical details illustrations ;
490 ## - SERIES STATEMENT
Series statement Graduate texts in mathematics, 11.
500 ## - GENERAL NOTE
General note Includes Index
505 ## - FORMATTED CONTENTS NOTE
Formatted contents note I. The Complex Number System.- 1. The real numbers.- 2. The field of complex numbers.- 3. The complex plane.- 4. Polar representation and roots of complex numbers.- 5. Lines and half planes in the complex plane.- 6. The extended plane and its spherical representation.- II. Metric Spaces and the Topology of ?.- 1. Definition and examples of metric spaces.- 2. Connectedness.- 3. Sequences and completeness.- 4. Compactness.- 5. Continuity.- 6. Uniform convergence.- III. Elementary Properties and Examples of Analytic Functions.- 1. Power series.- 2. Analytic functions.- 3. Analytic functions as mapping, Moebius transformations.- IV. Complex Integration.- 1. Riemann-Stieltjes integrals.- 2. Power series representation of analytic functions.- 3. Zeros of an analytic function.- 4. The index of a closed curve.- 5. Cauchy's Theorem and Integral Formula.- 6. The homotopic version of Cauchy's Theorem and simple connectivity.- 7. Counting zeros; the Open Mapping Theorem.- 8. Goursat's Theorem.- V. Singularities.- 1. Classification of singularities.- 2. Residues.- 3. The Argument Principle.- VI. The Maximum Modulus Theorem.- 1. The Maximum Principle.- 2. Schwarz's Lemma.- 3. Convex functions and Hadamard's Three Circles Theorem.- 4. Phragm>en-Lindel>uf Theorem.- VII. Compactness and Convergence in ihe Space of Analytic Functions.- 1. The space of continuous functions C(G, ?).- 2. Spaccs of analytic functions.- 3. Spaccs of meromorphic functions.- 4. The Riemann Mapping Theorem.- 5. Weierstrass Factorization Theorem.- 6. Factorization of the sine function.- $7. The gamma function.- 8. The Riemann zeta function.- VIII. Runge's Theorem.- 1. Runge's Theorem.- 2. Simple connectedness.- 3. Mittag-Leffler's Theorem.- IX. Analytic Continuation and Riemann Surfaces.- 1. Schwarz Reflection Principle.- $2. Analytic Continuation Along A Path.- 3. Monodromy Theorem.- 4. Topological Spaces and Neighborhood Systems.- $5. The Sheaf of Germs of Analytic Functions on an Open Set.- $6. Analytic Manifolds.- 7. Covering spaccs.- X. Harmonic Functions.- 1. Basic Properties of harmonic functions.- 2. Harmonic functions on a disk.- 3. Subharmonic and superharmonic functions.- 4. The Dirichlet Problem.- 5. Green's Functions.- XI. Entire Functions.- 1. Jensen's Formula.- 2. The genus and order of an entire function.- 3. Hadamard Factorization Theorem.- XII. The Range of an Analytic Function.- 1. Bloch's Theorem.- 2. The Little Picard Theorem.- 3. Schottky's Theorem.- 4. The Great Picard Theorem.- Appendix A: Calculus for Complex Valued Functions on an Interval.- Appendix B: Suggestions for Further Study and Bibliographical Notes.- References.- List of Symbols.
520 ## - SUMMARY, ETC.
Summary, etc <br/>"This book presents a basic introduction to complex analysis in both an interesting and a rigorous manner. It contains enough material for a full year's course, and the choice of material treated is reasonably standard and should be satisfactory for most first courses in complex analysis.
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical Term Functions of complex variables.
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type Reference Books
Holdings
Collection code Home library Current library Shelving location Date acquired Source of acquisition Cost, normal purchase price Full call number Accession Number Koha item type
Reference Main Library Main Library Reference 22/03/2005 Purchased 525.00 515.9 CON 009599 Reference Books

© University of Vavuniya

---