Image from Google Jackets

Introduction to deep learning using R : a step-by-step guide to learning and implementing deep learning models using R

By: Material type: TextTextSeries: Publication details: New York? : Apress, ©2017.Description: xix, 227 pages : illustrationsISBN:
  • 9781484227336
  • 1484227336
Subject(s): DDC classification:
  • 006.31 BEY
Contents:
Introduction to deep learning -- Mathematical review -- A review of optimization and machine learning -- Single and multilayer perceptron models -- Convolutional neural networks (CNNs) -- Recurrent neural networks (RNNs) -- Autoencoders, restricted boltzmann machines, and deep belief networks -- Experimental design and heuristics -- Hardware and software suggestions -- Machine learning example problems -- Deep learning and other example problems -- Closing statements.
Summary: Understand deep learning, the nuances of its different models, and where these models can be applied. The abundance of data and demand for superior products/services have driven the development of advanced computer science techniques, among them image and speech recognition. Introduction to Deep Learning Using R provides a theoretical and practical understanding of the models that perform these tasks by building upon the fundamentals of data science through machine learning and deep learning. This step-by-step guide will help you understand the disciplines so that you can apply the methodology in a variety of contexts. All examples are taught in the R statistical language, allowing students and professionals to implement these techniques using open source tools. What You Will Learn: • Understand the intuition and mathematics that power deep learning models • Utilize various algorithms using the R programming language and its packages • Use best practices for experimental design and variable selection • Practice the methodology to approach and effectively solve problems as a data scientist • Evaluate the effectiveness of algorithmic solutions and enhance their predictive power.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Reference Books Reference Books Main Library Reference Reference 006.31 BEY (Browse shelf(Opens below)) Available 015850
Total holds: 0

Includes index.

Introduction to deep learning -- Mathematical review -- A review of optimization and machine learning -- Single and multilayer perceptron models -- Convolutional neural networks (CNNs) -- Recurrent neural networks (RNNs) -- Autoencoders, restricted boltzmann machines, and deep belief networks -- Experimental design and heuristics -- Hardware and software suggestions -- Machine learning example problems -- Deep learning and other example problems -- Closing statements.

Understand deep learning, the nuances of its different models, and where these models can be applied. The abundance of data and demand for superior products/services have driven the development of advanced computer science techniques, among them image and speech recognition. Introduction to Deep Learning Using R provides a theoretical and practical understanding of the models that perform these tasks by building upon the fundamentals of data science through machine learning and deep learning. This step-by-step guide will help you understand the disciplines so that you can apply the methodology in a variety of contexts. All examples are taught in the R statistical language, allowing students and professionals to implement these techniques using open source tools. What You Will Learn: • Understand the intuition and mathematics that power deep learning models • Utilize various algorithms using the R programming language and its packages • Use best practices for experimental design and variable selection • Practice the methodology to approach and effectively solve problems as a data scientist • Evaluate the effectiveness of algorithmic solutions and enhance their predictive power.

There are no comments on this title.

to post a comment.

© University of Vavuniya

------